Usage
PyTorch Tabular comes with intelligent defaults that make it easy to get started with tabular deep learning. However, it also provides the flexibility to customize the model and pipeline to suit your needs.
Here is a simple example of how to use PyTorch Tabular to train a model, evaluate on new data, generate predictions, and save and load the model.
from pytorch_tabular import TabularModel
from pytorch_tabular.models import CategoryEmbeddingModelConfig
from pytorch_tabular.config import (
DataConfig,
OptimizerConfig,
TrainerConfig,
)
data_config = DataConfig(
target=[
"target"
], # target should always be a list.
continuous_cols=num_col_names,
categorical_cols=cat_col_names,
)
trainer_config = TrainerConfig(
auto_lr_find=True, # Runs the LRFinder to automatically derive a learning rate
batch_size=1024,
max_epochs=100,
)
optimizer_config = OptimizerConfig()
model_config = CategoryEmbeddingModelConfig(
task="classification",
layers="1024-512-512", # Number of nodes in each layer
activation="LeakyReLU", # Activation between each layers
learning_rate=1e-3,
)
tabular_model = TabularModel(
data_config=data_config,
model_config=model_config,
optimizer_config=optimizer_config,
trainer_config=trainer_config,
)
tabular_model.fit(train=train, validation=val)
result = tabular_model.evaluate(test)
pred_df = tabular_model.predict(test)
tabular_model.save_model("examples/basic")
loaded_model = TabularModel.load_model("examples/basic")
For more detailed tutorials and how-to guides refer to the Tutorials and How-To Guides sections.